Table of Contents

2

Understanding Life Systems

Students will explore the components, structures, and functions of cells in plants and animals. They will learn about the postulates of the cell theory and understand the role of microscopes in the study of cells. Students will also examine the roles of diffusion and osmosis and their processes within a cell. Furthermore, students will identify unicellular and multicellular organisms and investigate how they satisfy their basic life needs. They will study the organization of cells in multicellular organisms.

Unit 1	Postulates of the Cell Theory	8
Unit 2	Parts of the Cell	14
Unit 3	Animal Cells and Plant Cells	20
	Experiment	26
Unit 4	Diffusion and Osmosis	28
Unit 5	Unicellular and Multicellular Organisms	34
Unit 6	Cells in Multicellular Organisms	40
	Experiment	46
	Review	48
	Scientists at Work	54
	Cool Science Facts	55

3

Understanding Structures and Mechanisms

Students will identify different kinds of systems and recognize smaller systems within large systems. They will discover that all systems have purposes, inputs, and outputs. Moreover, they will learn the scientific definitions of the words: energy, force, work, and efficiency, and learn to calculate how much work some simple machines do and their mechanical advantages. Students will also study the causes of heat and ways to minimize heat in mechanical systems. Furthermore, they will investigate how systems evolved in our society and how systems improved the productivity in industries.

Unit 1	Systems	60
Unit 2	More about Systems	66
Unit 3	Systems in Action	72
	Experiment	78
Unit 4	Work and Mechanical Advantage	80
Unit 5	Mechanical Systems and Heat	86
Unit 6	Systems and Society	92
	Experiment	98
	Review	100
	Scientists at Work	106
	Cool Science Facts	107

Contents

4

Understanding Matter and Energy

Students will examine the properties of fluids including viscosity, and the relationship between buoyancy and density. They will learn to explain, using the particle theory of matter, how different states of matter vary in density. They will also calculate the density of a fluid with its mass and volume. In addition, students will study the difference between the compressibility of liquids and gases, as well as how their compressibility works in hydraulic and pneumatic systems. They will also explore the use and control of fluids in society.

Unit 1	Eluida and Viceocity	112
	Fluids and Viscosity	112
Unit 2	Fluids and Density	116
Unit 3	Buoyancy	120
	Experiment	124
Unit 4	Compressible Fluids	126
Unit 5	Fluids and Pressure	130
Unit 6	Fluids and Society	134
	Experiment	138
	Review	140
	Scientists at Work	146
	Scientists at Work Cool Science Facts	ANADA 147
	POPULA	

5

Understanding Earth and Space Systems

Students will examine the conditions under which each state of water exists and the relative amount of each state. They will learn about watersheds and water tables, their importance in water management and planning, and the impacts of nature and humans on them. In addition, students will study the characteristics of glaciers and polar ice caps, and the factors that affect their sizes. They will also learn how large bodies of water affect climate and weather patterns. The uses of our water supply and the treatments that it goes through will also be discussed.

Unit 1	Water on Earth	152
Unit 2	The Watershed	156
Unit 3	The Water Table	160
	Experiment	164
Unit 4	Glaciers and Polar Ice Caps	166
Unit 5	Water Systems and Climate	170
Unit 6	Society and Water Systems	174
	Experiment	178
	Review	180
	Scientists at Work	186
	Cool Science Facts Answers	187
	Answers	191
	Trivia Questions	207

Understanding Matter and Energy

Fluids and Viscosity

You should have known fluids by certain characteristics – their ability to flow and their lack of a fixed shape. In this unit, you will identify different fluids by these characteristics, and examine another property of fluids – viscosity.

Exte	sticky, runny describe the Some fluids what makes flow slowly l Check the Which one	ely familiar with these , gooey, stiff, and wa e thickness of drinks, flow fast, but some fluids flow at different have anything in com ones that flow slowly. e do you think has the h	itery, which you u soup, and other f do not. Do you t speeds? Do fluid mon? Do you think they	ise to fluids. know s that	scosity?	
	Fluids			-		
	Oair	melted butter) oil	juice) liquid soap	
	Olava	honey) helium () egg	O condensed soup	

A. Fill in the blanks to complete the paragraph about fluids. Then circle the correct word.

The Viscosity of Fluids

Fluids <u>1.</u> and do not	have a fixed $\frac{2}{\text{shape/volume}}$. Each fluid
has its own viscosity that affects	its $\frac{3.}{way/rate}$ of flow. Viscosity is not
only a measure of a fluid's <u>4.</u>	ness/taste or thinness, but also a measure
of its inner $\frac{5.}{\text{air/friction}}$, that	s, its <u>6.</u> resistance/reluctance
to flow, and how other substance	⊖S <u>7.</u> float/move maple (\(vinegar
through it.	syrup
The inner friction of greater / smaller than	Z → SINKS

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, scanning, recording or otherwise, without the permission of the publisher.

Steps For Experiment B

- 1. Put the raw egg in the cup of warm water.
- 2. Add ¼ teaspoon of salt into the cup and observe the egg's movement.
- 3. Repeat step 2 until the egg moves significantly.
- 4. Record how much salt you added and what you observed.

Amount of salt added: _____

Observation: _____

Result

Compare the density of a raw egg, tap water, and salt water. Which one has the highest density? Which one has the lowest?

Ca	onclusion
nent A	The hypothesis was:
Experiment	My experiment the hypothesis.
ient B	The hypothesis was: DCA
Experiment	My experiment OPU- supported/did not support the hypothesis.

125 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, scanning, recording or otherwise, without the permission of the publisher.

